Abstract

The task of Integrated Power and Attitude Control (IPAC) of a spacecraft can be implemented by Variable Speed Control Moment Gyros (VSCMGs). The Integrated Power and Attitude Control System (IPACS) singularity problem is the key factor for the spacecraft to successfully perform IPAC task, which can be overcome by rational designing steering law. The singularity characteristic and the steering law should be considered during the process of design parameters for the VSCMG cluster with IPACS task. There is no research report in this area at present. The steering results of weighted pseudo-inverse and null motion of Weighted Pseudo-Inverse with Null Motion (WPINM) can be canceled by each other under some certain condition. So the flywheel torque requirement of the WPINM steering law can be greatly increased, which is contradictory to the original design intention of the weighted matrix. A steering law with minimum requirement of flywheel power and torque is introduced from existing research result. Then, the constraint of the IPACS singularity problem and the SGCMGs singularity problem cannot be encountered during the whole process of IPAC task is given. At last, the parameters design problem of VSCMGs for the IPAC task is cast as a multi-objective optimization problem with minimum whole system power and maximum utilization ratio of flywheel momentum under the condition of consideration of the steering. The intelligent algorithm of Non-dominated Sorting Genetic Algorithm (NSGA) is used to solve the nonlinear multi-objective problem. The flywheel power can be greatly reduced by the new parameters design method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.