Abstract

We show that, as the number of nodes in the network n tends to infinity, the maximum concurrent flow (MCF) and the minimum cut-capacity scale as Theta(n2r3(n)/k) for a random choice of k ges Theta(n) source-destination pairs, where r(n) is the communication range in the network. In addition, we show that it is possible to attain this optimal order throughput in interference-constrained networks if nodes are capable of multiple-packet transmission and reception. This result provides an improvement of Theta(nr2(n)) over the highest achieved capacity reported to date. Furthermore, in stark contrast to the conventional wisdom that has evolved from the Gupta-Kumar results, our results show that the capacity of ad-hoc networks can actually increase with n while the communication range tends to zero!

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.