Abstract

In this paper, we first generalize a new energy approach, developed by Guo and Wang [Commun. Partial Differ. Equations 37, 2165–2208 (2012)] in the framework of homogeneous Besov spaces for proving the optimal temporal decay rates of solutions to the fractional power dissipative equation, then we apply this approach to the critical and supercritical surface quasi-geostrophic equation and the critical Keller-Segel system. We show that certain weighted negative Besov norm of solutions is preserved along time evolution and obtain the optimal temporal decay rates of the spatial derivatives of solutions by the Fourier splitting approach and the interpolation techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.