Abstract

The pandemic caused by COVID-19 led to serious disruptions in the preventive efforts against other infectious diseases. In this work, a robust mathematical co-dynamical model of COVID-19, dengue, and HIV is designed. Rigorous analyses for investigating the dynamical properties of the designed model are implemented. Under a special case, the stability of the model’s equilibria is demonstrated using well-known candidates for the Lyapunov function. To reduce the co-circulation of the three diseases, optimal interventions were defined for the model and the control system was analyzed. Simulations of the model showed different control scenarios, which could have a positive or detrimental impact on reducing the co-circulation of the diseases. Highlights of the simulations included: (i) Upon implementation of the first intervention strategy (control against COVID-19 and dengue), it was observed that a significant number of single and dual infection cases were averted. (ii) Under the COVID-19 and HIV prevention strategy, a remarkable number of new single and dual infection cases were also prevented. (iii) Under the COVID-19 and co-infection prevention strategy, a significant number of new infections were averted. (iv) Comparing all the intervention measures considered in this study, it is possible to state that the strategy that combined COVID-19/HIV averted the highest number of new infections. Thus, the COVID-19/HIV strategy would be the ideal and optimal strategy to adopt in controlling the co-spread of COVID-19, dengue, and HIV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call