Abstract

This is an experimental, numerical and analytical study of the optimal spacing between cylinders in cross-flow forced convection. The cylinder array occupies a fixed volume and is exposed to a free stream of given velocity and temperature. The optimal cylinder-to-cylinder spacing is determined by maximizing the overall thermal conductance between all the cylinders and the free stream. In the first part, the optimal spacing and corresponding maximum thermal conductance are determined based on experiments with forced air for H D = 6.2 and in the Re D range 50–4000, where Re D is based on the free-stream approach velocity and cylinder diameter D, and H is the array length in the flow direction. In the second part, similar results are developed based on numerical simulations for Pr = 0.72, 10 ⩽ H D ⩽ 20 and 40 ⩽ Re D ⩽ 200. In the concluding section, the experimental and numerical results for optimal spacing and maximum thermal conductance are explained and correlated analytically by intersecting the small-spacing and large-spacing asymptotes of the thermal conductance function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.