Abstract

When a train travels in a multi-trains system, the power flow of other trains and the track grades make up the spatial–temporal area (STA) for the train. Finding the optimal solution for the energy-efficient train control problem in STA can help reduce the net energy consumption. This paper studies the analytic method to obtain the optimal solution. In Part 1, we propose an algorithm specifically designed for this problem. The underlying structure of the algorithm is the connection between three optimal states through the optimal feasible strategy. We propose an algebraic method to calculate the optimal feasible strategy and discuss how it intersects with the speed limit. In Part 2, we will discuss the optimality and uniqueness of the optimal feasible strategy. Case studies using data from a real freight railway line are given to demonstrate the effectiveness of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call