Abstract

In this paper, we present a series of new preconditioners with parameters of strictly diagonally dominant Z-matrix, which contain properly two kinds of known preconditioners as special cases. Moreover, we prove the monotonicity of spectral radiuses of iterative matrices with respect to the parameters and some comparison theorems. The results obtained show that the bigger the parameter k is(i.e., we select the more upper right diagonal elements to be the preconditioner), the less the spectral radius of iterative matrix is. A numerical example generated randomly is provided to illustrate the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.