Abstract
Multiple testing has been widely adopted for genome-wide studies such as microarray experiments. To improve the power of multiple testing, Storey (J. Royal Statist. Soc. B 2007; 69: 347-368) recently developed the optimal discovery procedure (ODP) which maximizes the number of expected true positives for each fixed number of expected false positives. However, in applying the ODP, we must estimate the true status of each significance test (null or alternative) and the true probability distribution corresponding to each test. In this article, we derive the ODP under hierarchical, random effects models and develop an empirical Bayes estimation method for the derived ODP. Our methods can effectively circumvent the estimation problems in applying the ODP presented by Storey. Simulations and applications to clinical studies of leukemia and breast cancer demonstrated that our empirical Bayes method achieved theoretical optimality and performed well in comparison with existing multiple testing procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.