Abstract
In this paper, we are concerned with the optimal decay estimates for the Euler–Poisson two-fluid system. It is first revealed that the irrotationality of the coupled electronic field plays a key role such that the two-fluid system has the same dissipative structure as generally hyperbolic systems satisfying the Shizuta–Kawashima condition. This fact inspires us to obtain decay properties for linearized systems in the framework of Besov spaces. Furthermore, various decay estimates of solution and its derivatives of fractional order are deduced by time-weighted energy approaches in terms of low-frequency and high-frequency decompositions. As the direct consequence, the optimal decay rates of Lp(ℝ3)-L2 (ℝ3) (1 ≤ p < 2) type for the Euler–Poisson two-fluid system are also shown. Compared with previous works in Sobolev spaces, a new observation is that the difference of variables exactly consists of a one-fluid Euler–Poisson equations, which leads to the sharp decay estimates for velocities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.