Abstract
We consider the variational problem which consists in minimizing the compliance of a prescribed amount of isotropic elastic material placed into a given design region when it is subjected to a given load. We perform the asymptotics of this problem when the design region is a straight cylinder with infinitesimal cross section. The results presented in this Note concern the pure torsion regime and state the existence of optimal shapes for the limit problem. When the filling ratio tends in turn to zero, these optimal shapes concentrate on the boundary of the Cheeger set of the section of the design region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.