Abstract

The optical Tamm states localized at the edges of a photonic crystal bounded by a nanocomposite on its one or both sides are investigated. The nanocomposite consists of metal nanoinclusions with an orientation-ordered spheroidal shape, which are dispersed in a transparent matrix, and is characterized by the effective resonance permittivity. The spectrum of transmission of the longitudinally and transversely polarized waves by such structures at the normal incidence of light was calculated. The spectral manifestation of the Tamm states caused by negative values of the real part of the effective permittivity in the visible spectral range was studied. Features of the spectral manifestation of the optical Tamm states for different degrees of extension of spheroidal nanoparticles and different periods of a photonic crystal were investigated. It is demonstrated that splitting of the frequency due to elimination of degeneracy of the Tamm states localized at the interfaces between the photonic crystal and nanocomposite strongly depends on the volume fraction of the spheroids in the nanocomposite and on the ratio between the polar and equatorial semiaxes of the spheroid. Each of the two orthogonal polarizations of the incident wave has its own dependence of splitting on the nanoparticle density, which makes the transmission spectra polarization-sensitive. It is shown that the Tamm state is affected by the size-dependent permittivity of anisotropic nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.