Abstract

This study investigates the optical response of liquid crystal cells to a low frequency square wave voltage of 0.1 Hz. It is found that there are three physical phenomena that dominate the overall properties of the device. The first is the discharging effect whereby the effective voltage over the liquid crystal layer decreases as a function of time; this occurs due to mobile ions being present within the liquid crystal material. The second is the charging-up of the cell where the effective voltage increases with time; this is attributed to charge separation taking place within the polyimide layer upon application of the d.c. voltage component. The third effect is cell asymmetry whereby the effective voltage depends upon the polarity of the externally applied field; this is the result of a locked-in d.c. holding voltage being present within the cell layers. These three effects are analysed in some detail with the view of developing a liquid crystal cell capable of being driven with a low frequency square wave voltage. A model of a liquid crystal cell in which the liquid crystal material can dissolve impurity ions from the alignment layers and in which the ions can then become re-adsorbed into the polyimide layer is deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.