Abstract

Tin oxide (SnO2) thin film is a form of modification of semiconductor material in nanosize. The thin film study aims to analyze the effect of triple doping (Aluminum, Indium, and Fluorine) on the optical properties of SnO2: (Al + In + F) thin films. Aluminum, Indium, and Fluorine as doping SnO2 with a mass percentage of 0, 5, 10, 15, 20, and 25% of the total thin-film material. The addition of Al, In, and F doping causes the thin film to change optical properties, namely the transmittance and absorbance values ​​changing. The transmittance value is 67.50, 73.00, 82.30, 87.30, 94.6, and 99.80 which is at a wavelength of 350 nm for the lowest to the highest doping percentage, respectively. The absorbance value increased with increasing doping percentage at 300 nm wavelength of 0.52, 0.76, 0.97, 1.05, 1.23, and 1.29 for 0, 5, 10, 15, 20, and 25% doping percentages, respectively. The absorbance value is then used to find the gap energy of the SnO2: (Al + In + F) thin film of the lowest doping percentage to the highest level i.e. 3.60, 3.55, 3.51, 3.47, 3.42, and 3.41 eV. Thin-film activation energy also decreased with values of 2.27, 2.04, 1.85, 1.78, 1.72, and 1.51 eV, respectively for an increasing percentage of doping. The thin-film SnO2: (Al + In + F) which experiences a gap energy reduction and activation energy makes the thin film more conductive because electron mobility from the valence band to the conduction band requires less energy and faster electron movement as a result of the addition of doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.