Abstract

Taking the influences of piezoelectricity and spontaneous polarization into consideration, the nonlinear optical Kerr effect in a nitride semiconductor coupling double quantum well (DQW) has been theoretically investigated by using the compact density matrix approach and iterative treatment. The electronic eigenstates in a nitride DQW are exactly solved based on the built-in electric field model already constituted in recent reference. The band non-parabolicity effect of nitride heterostructures has been taken into account. A typical wurtzite GaN / AlGaN DQW is chosen to perform numerical calculations. The calculated results reveal that the optical Kerr coefficients sensitively depend on the structural parameters of the coupling DQW system. Moreover, a strong optical Kerr effect can be realized in the nitride DQW by choosing a group of optimum structural parameters and doped fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.