Abstract
The optical gain and radiative current density of GaInNAs/GaAs/AlGaAs separate confinement heterostructure quantum well (QW) lasers with an emission wavelength of 1.3 μm have been theoretically investigated. The effect of carrier leakage from the GaInNAs QW to the GaAs waveguide layer is studied, and its influence on the optical gain and radiative current density is identified. The hole filling caused by an injected carrier has a strong impact on the optical gain and radiative current density, while the effect of electron filling is negligible, reflecting the smaller band-gap discontinuity in the valence band than in the conduction band. Hole occupation in the waveguide layer decreases the optical gain, and increases the radiative and threshold current densities of the laser. Our calculated threshold current density (659.6 A/cm2) at T=300 K is in good agreement with the experimental value (650.9 A/cm2) reported in literature [R. Fehse et al., IEEE J. Sel. Top. Quantum Electron. 8, 801 (2002)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.