Abstract

Interconnection networks with optical communication links outperform others using electronic communication links when the distance is long in terms of speed and power consumption. However, for short distances, electronic network topologies are preferred due to lower material cost requirements. As a result, hybrid network topologies were constructed to combine the benefits of both types of network topologies, such as Optical Transpose Interconnection System (OTIS). This paper presents a new hybrid interconnection network topology, which is constructed using both optical and electronic links, called the Optical Chained-Cubic Tree (OCCT). This new OCCT topology is based on the Chained-Cubic Tree (CCT) interconnection network and is designed to cope with both types of binary trees; full and complete. Also, the topological properties of OCCT in terms of diameter, connectivity, degree, bisection width, and cost are presented and compared with OTIS-Mesh and CCT interconnection networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.