Abstract

The Galactic neutron star X-ray binary Her X-1 displays a well-known 35-day superorbital modulation in its X-ray and optical light curves. Detected across a broad energy range, the modulation is prevalent in X-rays, cycling between low and high states. The 35-day modulation is believed to be the result of the periodic occultation of the neutron star by a warped precessing accretion disc. Using optical observations of Her X-1 during both the anomalous low state (ALS) and the normal high state, it is shown that the orbital light curve of Her X-1 varies systematically over the 35-day precession cycle. The 35-day precessional profile is remarkably consistent between the ALS and normal high state of Her X-1, suggesting only a very slight change in the form of the disc warp between the two states. Comparison of optical and X-ray light curves suggests that a significant component of the X-ray flux during the ALS originates from the companion star.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.