Abstract

The cockroach, Leucophaea maderae, can be trained in an associative olfactory memory task by either classical or operant conditioning. When trained by classical conditioning, memory formation is regulated by a circadian clock, but once the memory is formed, it can be recalled at any circadian time. In contrast, when trained via operant conditioning, animals can learn the task at any circadian phase, but the ability to recall the long-term memory is tied to the phase of training. The optic lobes of the cockroach contain a circadian clock that drives circadian rhythms of locomotor activity, mating behavior, sensitivity of the compound eye to light, and the sensitivity of olfactory receptors in the antennae. To evaluate the role of the optic lobes in regulating learning and memory processes, the authors examined the effects of surgical ablation of the optic lobes on memory formation in classical conditioning and memory recall following operant conditioning. The effect of optic lobe ablation was to "rescue" the deficit in memory acquisition at a time the animals normally cannot learn and "rescue" the animal's ability to recall a memory formed by operant conditioning at a phase where memory was not normally expressed. The results suggested that the optic lobe pacemaker regulates these processes through inhibition at "inappropriate" times of day. As a pharmacological test of this hypothesis, the authors showed that injections of fipronil, an antagonist of GABA and glutamate-activated chloride channels, had the same effects as optic lobe ablation on memory formation and recall. The data suggest that the optic lobes contain the circadian clock(s) that regulate learning and memory processes via inhibition of neural processes in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call