Abstract

Placebo analgesia is one of the most robust and best-studied placebo effects. Recent researches suggest that placebo analgesia activated the μ-opioid receptor signalling in the human brain. However, whether other opioid receptors are involved in the placebo analgesia remains unclear. We have previously evoked placebo responses in mice (Guo et al. 2010, 2011) and these mice may serve as a model for investigating placebo analgesia. In the present study, we tried to explore the site of action and types of opioid receptors involved in placebo response. Male Sprague-Dawley rats were trained with 10 mg/kg morphine for 4 d to establish the placebo analgesia model. This placebo analgesia can be blocked by injection of 5 mg/kg dose naloxone or by microinjection with naloxone (1, 3 or 10 μg/rat) into rostral anterior cingulate cortex (rACC). Then, animals were tested after intra-rACC microinjection of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP, a selective μ-opioid receptor antagonist) or naltrindole (NTI, a highly selective δ-opioid receptor antagonist) or nor-binaltorphimine (nor-BNI, a highly selective κ-opioid receptor antagonist). Our results showed that CTOP, but not NTI or nor-BNI, could reduce the pain threshold in placebo analgesia rats. It may be concluded that rACC is the key brain region involved in placebo analgesia and the opioid placebo analgesia is mediated exclusively through μ-opioid receptor in rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.