Abstract

Abstract The German Weather Service (Deutscher Wetterdienst) has recently developed a new operational global numerical weather prediction model, named GME, based on an almost uniform icosahedral–hexagonal grid. The GME gridpoint approach avoids the disadvantages of spectral techniques as well as the pole problem in latitude–longitude grids and provides a data structure extremely well suited to high efficiency on distributed memory parallel computers. The formulation of the discrete operators for this grid is described and evaluations that demonstrate their second-order accuracy are provided. These operators are derived for local basis functions that are orthogonal and conform perfectly to the spherical surface. The local basis functions, unique for each grid point, are the latitude and longitude of a spherical coordinate system whose equator and zero meridian intersect at the grid point. The prognostic equations for horizontal velocities, temperature, and surface pressure are solved using a semi-implicit ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.