Abstract

The operation region and the parameter region of magnetohydrodynamic (MHD) modes are analyzed for J-TEXT Ohmic discharges. The operation region is described by the Hugill diagram, which combines low-q and high density limits. It is found that the operation region has expanded over the years on J-TEXT. In detail, the high density limit has increased from less than 0.5nG to 0.7nG and the low-q limit has lowered from 2.8 to 2.2; this is due to the reduced impurity content that results from coating graphite on the wall. Furthermore, the operation region has further expanded to 0.85nG and qa ~ 2.0, respectively—a result of suppressing the disruptive precursor MHD by using externally-applied resonant magnetic perturbations (RMPs). Here, nG and qa are the Greenwald density limit and edge safety factor, respectively. Corresponding to the results of the operation region, the parameter regions of MHD modes are presented. It is found that a m/n = 2/1 tearing mode (TM) appears for a wide parameters region with 2.4 < qa < 4 and ne < 3 × 1019 m−3—here m and n are the poloidal and toroidal mode numbers. Furthermore, other MHD modes such as m/n = 5/2, 3/1, 4/1 and 7/2, appear only when their rational surfaces are close to the plasma edge or m/n ~ qa, and these MHD modes may transit to a 2/1 TM when changing the plasma parameters. In addition, correlation analysis between the amplitude and frequency of the dominant 2/1 TM for different plasma conditions reveals that there is a threshold between normal discharges and density-limit discharges, which would be a reference to predict density-limit disruptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.