Abstract

This paper deals with the digital computer simulation of a distributed air transmission line subjected to an impulse, step, or arbitrary excitation. The rationale is based on the inverse Fourier transform principle: R(t)=F−1{G(jω)•P1(jω)} where R(t) is the response, G(jω), the system frequency function, and P1(jω), the frequency spectrum of the input function. For input flow prediction, G(jω) is the input admittance. G(jω) represents the transfer function for pressure calculation. The predicted dynamics of a blocked and an open line subjected to arbitrary periodic excitation are compared with experimental measurements. The paper also presents the mathematical proofs to illustrate the functional behaviors of G(jω) as ω is varied from −∞ to −∞.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.