Abstract
We examined the relationship between thermal tolerance, measured as critical thermal maximum (CT(max)), and aspects of the heat-shock response in tidepool sculpins (Oligocottus maculosus) acclimated to constant laboratory temperatures or acclimatized to field conditions. The CT(max) of fish laboratory acclimated to 6°, 13°, and 20°C were 27.6° ± 0.1°C, 29.5° ± 0.1°C, and 30.8° ± 0.1°C, respectively, increasing linearly by 0.2°C for each 1°C increase in acclimation temperature. The CT(max) of field-acclimatized fish from the low intertidal (29.9° ± 0.1°C) was significantly lower than that of fish from the mid- (30.5° ± 0.1°C) and high (30.4° ± 0.1°C) intertidal. CT(max) and the onset temperature of hsp70 induction in gill (T(on)) were highly correlated in both laboratory-acclimated and field-acclimatized sculpins, with T(on) occurring at 2°C below CT(max) in all cases. However, there was no consistent relationship between CT(max) and the maximum levels of gill hsp70 mRNA. Predicted "acclimation" temperature (15.9° ± 0.3°C) and mean habitat temperature (15.9° ± 1.6°C) were similar for sculpins from low intertidal pools, but this relationship was not apparent in mid- and high intertidal fish. Mark-recapture experiments indicated that approximately 80% of fish from low intertidal pools were residents of that pool, but residency rates were less than 50% in mid- and high intertidal pools, which may explain the lack of correlation between CT(max) and habitat variables in these groups. These data indicate that gill hsp70 T(on) and CT(max) are highly correlated indicators of the thermal performance of tidepool sculpins in both laboratory and field settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.