Abstract

Water properties are dominated by the hydrogen bond interaction that gives rise in the stable liquid phase to the formation of a dynamical network. The latter drives the water thermodynamics and is at the origin of its well known anomalies. The HB structural geometry and its changes remain uncertain and still are challenging research subjects. A key question is the role and effects of the HB tetrahedral structure on the local arrangement of neighboring molecules in water. Here the hydrogen dynamics in bulk water is studied through the combined use of Neutron Compton Scattering and NMR techniques. Results are discussed in the framework of previous studies performed in a wide temperature range, in the liquid, solid, and amorphous states. For the first time this combined studies provide an experimental evidence of the onset of the water tetrahedral network at T~315 K, originally proposed in previous studies of transport coefficients and thermodynamical data; below this temperature the local order in water changes and the lifetime of local hydrogen bond network becomes long enough to gradually develop the characteristic tetrahedral network of water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call