Abstract

ABSTRACT The influences of inherent cross-anisotropy on soil strength on the homogeneous deformation and bifurcation characteristic of the stress-strain relationship are studied. By neglecting the cohesion term and employing an elliptical shape function in Mohr-Coulomb failure criterion, a 3D anisotropic failure criterion is proposed to describe the strength of cross-anisotropic sands under true triaxial conditions. Based on the proposed failure criterion, the influence of the anisotropic parameter on the failure curve on the deviatoric plane and the relationship between the peak friction angle and the intermediate principal stress ratio are obtained. The suitability of the criterion is justified by comparing with a series of true triaxial tests on sands without strain localization. The proposed failure criterion is adopted to build a three dimensional anisotropic elasto-plastic model, which allows the bifurcation analysis to be incorporated with the non-coaxial flow rule for the purpose of studying the onset of strain localization. Compared with the true triaxial tests under several intermediate principal stress ratios conditions in the literature, the proposed model and bifurcation analysis is shown to be capable of predicting the influence of inherent cross-anisotropy on the onset of strain localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.