Abstract

This paper presents a revised linear stability analysis for the onset of natural convection in a horizontal nanofluid layer. The employed model incorporates the effects of Brownian motion and thermophoresis. It is now assumed that the value of the temperature can be imposed on the boundaries, but the nanoparticle fraction adjusts so that the nanoparticle flux is zero on the boundaries. It is shown that, with the new boundary conditions, oscillatory convection can no longer occur. The pertinent dimensionless nanofluid parameters have been rescaled. The effect of the nanoparticles on non-oscillatory convection is destabilizing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.