Abstract

AbstractTriggering intrusions of phreatic eruptions are often observed as seismic and ground deformation signals on a time scale of minutes. The current understanding of hydrothermal intrusions still needs improvement to obtain insight into the eruption scale from the observables. We examine local geophysical data from the precursory hydrothermal intrusion of the 2018 phreatic eruption of Kusatsu‐Shirane volcano. To achieve an integrated intrusion model, we divide analyzing time window into the onset, middle, and climax. Focusing on the transient response of tilt data for the sudden pressurization, we estimate a vertical tensile opening (1.7 × 103 m3/s in 40 s) at 1.1 km depth for the intrusion onset. Pressurization can represent the start of vapourization. Very long period (VLP, 0.033–0.1 Hz) seismic signals are adopted to constrain the middle and climax phases. We obtained two sequential semi‐horizontal tensile crack oscillation sources with peak volume changes of 3.6 × 104–1.9 × 105 m3 at 0.3–0.6 km depths. The second VLP source acted as a final trigger of the eruption to cause depressurization in the shallow portion of the intruded region, which is constrained as having reached 0.1 km depth by surface deformation. Simultaneously, we find another depressurization originated from depth in the climax due to a decrease in the hydrothermal intrusion rate. Through comparison with the 2014 Ontake phreatic eruption, the total inflation volume may correlate with eruption scales. Intruded hydrothermal fluid and local structure characteristics also may have to be considered to evaluate the eruptions scales from inferred signal source intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.