Abstract

Evolutionary game dynamics in finite populations provide a new framework for studying selection of traits with frequency-dependent fitness. Recently, a “one-third law” of evolutionary dynamics has been described, which states that strategy A fixates in a B-population with selective advantage if the fitness of A is greater than that of B when A has a frequency 1 3 . This relationship holds for all evolutionary processes examined so far, from the Moran process to games on graphs. However, the origin of the “number” 1 3 is not understood. In this paper we provide an intuitive explanation by studying the underlying stochastic processes. We find that in one invasion attempt, an individual interacts on average with B-players twice as often as with A-players, which yields the one-third law. We also show that the one-third law implies that the average Malthusian fitness of A is positive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.