Abstract

The harmonic wave equation in inhomogeneous media is exactly split into coupled first-order equations with respect to a principal direction of propagation according to the Bremmer scheme. The resulting one-way wave equation is shown not to conserve energy flux for dimensions two and three against the general belief in one-way wave propagation or parabolic equation literature. Conservation of energy flux is only ensured in the high frequency limit. On the other hand, a simple invariant is found that may be seen as a generalization of the Snell law to arbitrary, non-stratified, media. Similarly, the reciprocity property is not fully ensured in general and the time-reversal symmetry is ensured for propagating fields. Besides, in the one-way wave equation, the additional term to the standard parabolic equation is shown to strengthen mode coupling. The analysis encompasses the evanescent waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call