Abstract

Motivated by the discrete multi-rate Kaufmann–Roberts recurrence relations, we derive a functional equation (FE), which covers nonintegral states. This FE implies a unique effective step parameter d, which defines an equivalent one-level recurrence depth, or bit-rate, at each state under progress. This state-dependent depth results from the equality requirement of the multi-rate and the one-level model in the moment-generating function transform domain. By this method it is possible to model d by a few moments of the original multi-rate statistic. In this case we obtain an explicit FE solution covering the entire (global) state space. Next we verify that the resulting state probability density incorporates iteratively enumerated discrete state probabilities, including the state-dependent depth. With a system capacity C the iterations then need time complexities between O(C) and O(C2). In contrast to this each FE state, is performed at a time complexity O(1). By the efficient coverage of the whole state space, fast optimizations of multi-rate networks and multi-resource systems can be improved. Copyright © 2003 AEI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.