Abstract

Studies of the transient heat transfer within extended surfaces have so far considered the fins in isolation. The isolated fin model is not representative of the physical boundary conditions within an extended surface heat exchanger since it does not account for the thermal effects of the supporting interface. The aim of this study is to extend the work on transient heat transfer within finned surfaces by incorporating the supporting wall in the problem. A mathematical one-dimensional solution for harmonic oscillatory heat transfer in a fin assembly is derived. It is concluded that, unlike steady-state situations, the transient heat transfer in a fin assembly can only be found by considering both the wall and the fins simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call