Abstract

Persistent infection with hepatitis C virus (HCV) is a major risk factor for hepatocellular carcinoma (HCC). Accumulating evidence suggests that not only inflammation and subsequent fibrosis but also HCV itself are associated with hepatocarcinogenesis. To date, studies using transgenic mouse and cell-culture models, in which HCV proteins are expressed, indicate the direct pathogenicity of HCV, including oncogenic activity. In particular, the core protein of HCV induces excessive oxidative stress by impairing the mitochondrial electron transfer system by disrupting the function of the molecular chaperone, prohibitin. HCV also modulates intracellular signaling pathways, including mitogen-activated protein kinase, promoting the proliferation of hepatocytes. In addition, HCV induces disorders in lipid and glucose metabolism, thereby accelerating the progression of liver fibrosis and the development of HCC. Due to the development of direct-acting antivirals, which was made possible by basic research, HCV can be eradicated from almost all infected patients. However, such patients can develop HCC long after eradication of HCV, suggesting the genetic and/or epigenetic changes induced by HCV may be persistent. These results enhance our understanding of the role of HCV in hepatocarcinogenesis and will facilitate the development of therapeutic and preventive strategies for HCV-induced HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call