Abstract

BackgroundPeritoneal dissemination is a critical prognostic factor in ovarian cancer. Although stabilized spheroid formation promotes cancer cell peritoneal dissemination in ovarian cancer, the associated oncogenes are unknown. In this study, we assessed the role of the KRAS oncogene in ovarian cancer cell dissemination, focusing on the stability of cells in spheroid condition, as well as the modulation of intracellular signaling following spheroid transformation.MethodsWe used ID8, a murine ovarian cancer cell line, and ID8-KRAS, an oncogenic KRAS (G12 V)-transduced ID8 cell line in this study. Spheroid-forming (3D) culture and cell proliferation assays were performed to evaluate the growth characteristics of these cells. cDNA microarray analysis was performed to identify genes involved in KRAS-associated signal transduction in floating condition. A MEK inhibitor was used to evaluate the effect on cancer peritoneal dissemination.ResultsCell viability and proliferation in monolayer (2D) cultures did not differ between ID8 and ID8-KRAS cells. However, the proportions of viable and proliferating ID8-KRAS cells in 3D culture were approximately 2-fold and 5-fold higher than that of ID8, respectively. Spheroid-formation was increased in ID8-KRAS cells. Analysis of peritoneal floating cells obtained from mice intra-peritoneally injected with cancer cells revealed that the proportion of proliferating cancer cells was approximately 2-fold higher with ID8-KRAS than with ID8 cells. Comprehensive cDNA microarray analysis revealed that pathways related to cell proliferation, and cell cycle checkpoint and regulation were upregulated specifically in ID8-KRAS cells in 3D culture, and that some genes partially regulated by the MEK-ERK pathway were upregulated only in ID8-KRAS cells in 3D culture. Furthermore, a MEK inhibitor, trametinib, suppressed spheroid formation in 3D culture of ID8-KRAS cells, although trametinib did not affect 2D-culture cell proliferation. Finally, we demonstrated that trametinib dramatically improved the prognosis for mice with ID8-KRAS tumors in an in vivo mouse model.ConclusionsOur data indicated that KRAS promoted ovarian cancer dissemination by stabilizing spheroid formation and that the MEK pathway is important for stabilized spheroid formation. Disruption of spheroid formation by a MEK inhibitor could be a therapeutic target for cancer peritoneal dissemination.

Highlights

  • Peritoneal dissemination is a critical prognostic factor in ovarian cancer

  • Type 1 ovarian cancers, which consist of low-grade serous carcinoma (LGSC), mucinous carcinoma, endometrioid carcinoma, malignant Brenner tumor, and clear cell carcinoma typically display a variety of somatic sequence mutations in KRAS, BRAF, PTEN, PIK3CA CTNNB1, ARID1A, and PPPWR1A, but very rarely in TP53 [4,5,6]

  • Our results revealed that the oncogenic potential of KRAS was obvious only under 3D conditions and that spheroid formation is essential for peritoneal dissemination

Read more

Summary

Introduction

Peritoneal dissemination is a critical prognostic factor in ovarian cancer. stabilized spheroid formation promotes cancer cell peritoneal dissemination in ovarian cancer, the associated oncogenes are unknown. Platinum-based anti-cancer therapy has a high response rate for ovarian cancer, the five-year survival rate of patients with peritoneally disseminated advanced ovarian cancer remains less than 40% [1]. A novel platinum-based regimen combined with molecular-targeting agents, including bevacizumab or a poly (ADP-ribose) polymerase inhibitor, does not improve the overall survival for all patients with advanced ovarian cancer [2, 3]. Advanced ovarian cancer with peritoneal dissemination to the upper abdomen (pT3) is difficult to control using conventional chemotherapy, including molecular-targeting agents. The Cancer Genome Atlas (TCGA) research network reported that amplification of KRAS is observed in at least 10% of HGSCs. It reported that patients with wild-type TP53 had significantly shorter survival and higher chemoresistance than those with mutated TP53 [9]. The oncogene KRAS plays an important role in ovarian cancer

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call