Abstract

BackgroundTesticular germ cell cancer (TGCC) develops from pre-malignant germ neoplasia in situ (GCNIS) cells. GCNIS originates from fetal gonocytes (POU5F1+/MAGE-A4−), which fail to differentiate to pre-spermatogonia (POU5F1−/MAGE-A4+) and undergo malignant transformation. Gankyrin is an oncogene which has been shown to prevent POU5F1 degradation and specifically interact with MAGE-A4 in hepatocellular carcinoma (HCC) cells. We aimed to investigate the role of Gankyrin in progression from gonocyte to pre-invasive GCNIS and subsequent invasive TGCC.MethodsWe determined Gankyrin expression in human fetal testicular tissue (gestational weeks 9–20; n = 38), human adult testicular tissue with active spermatogenesis (n = 9), human testicular tissue with germ cell maturation delay (n = 4), testicular tissue from patients with pre-invasive GCNIS (n = 6), and invasive TGCC including seminoma (n = 6) and teratoma (n = 7). Functional analysis was performed in-vitro by siRNA knock-down of Gankyrin in the NTera2 cells (derived from embryonal carcinoma).ResultsGerm cell expression of Gankyrin was restricted to a sub-population of prespermatogonia in human fetal testes. Nuclear Gankyrin was also expressed in GCNIS cells of childhood and adult pre-invasive TGCC patients, and in GCNIS from seminoma and non-seminoma patients. Cytoplasmic expression was observed in seminoma tumour cells and NTera2 cells. Gankyrin knock-down in NTera2 cells resulted in an increase in apoptosis mediated via the TP53 pathway, whilst POU5F1 expression was unaffected. Furthermore, Gankyrin knock-down in NTera2 cells increased cisplatin sensitivity with an increase in cell death (13%, p < 0.05) following Gankyrin knock-down, when compared to cisplatin treatment alone, likely via BAX and FAS. Our results demonstrate that Gankyrin expression changes in germ cells during normal transition from gonocyte to prespermatogonia. In addition, changes in Gankyrin localisation are associated with progression of pre-invasive GCNIS to invasive TGCC. Furthermore, we found that Gankyrin is involved in the regulation of NTera2 cell survival and that a reduction in Gankyrin expression can modulate cisplatin sensitivity.ConclusionsThese results suggest that manipulation of Gankyrin expression may reduce the cisplatin dose required for the treatment of TGCC, with benefits in reducing dose-dependent side effects of chemotherapy. Further studies are required in order to assess the effects of modulating Gankyrin on GCNIS/TGCC using in vivo models.

Highlights

  • Testicular germ cell cancer (TGCC) develops from pre-malignant germ neoplasia in situ (GCNIS) cells

  • Gankyrin is not expressed in gonocytes, but in a subset of pre-spermatogonia in normal human fetal and adult testis In human fetal testis, triple immunofluorescent staining with POU5F1, MAGE-A4 and Gankyrin was performed

  • Nuclear Gankyrin is expressed in a subset of Germ Cell Neoplasia in situ (GCNIS) in tissue from patients with pre-invasive or invasive TGCC According to TGCC pathogenesis, there is a block of differentiation of gonocytes, which become GCNIS and remain in the testis

Read more

Summary

Introduction

Testicular germ cell cancer (TGCC) develops from pre-malignant germ neoplasia in situ (GCNIS) cells. GCNIS originates from fetal gonocytes (POU5F1+/MAGE-A4−), which fail to differentiate to pre-spermatogonia (POU5F1−/MAGE-A4+) and undergo malignant transformation. The precursor lesion for TGCC, known as Germ Cell Neoplasia in situ (GCNIS, previously carcinoma in situ) originates during fetal life when a sub-population of gonocytes fail to differentiate normally to (pre) spermatogonia [4, 5]. Models for the pathogenesis of TGCC have been hypothesized [12], the mechanisms that result in failure of gonocyte differentiation, development of GCNIS, and stimulation of proliferation of GCNIS to gain invasive capacity to form TGCC are incompletely understood, an interaction within (epi) genetics and environmental parameters are assumed [13]. All gonocytes and GCNIS cells express the pluripotency factor POU5F1 (OCT4), whilst a sub-population of GCNIS cells express the (pre) spermatogonial protein MAGE-A4. We have previously shown that MAGE-A4− GCNIS cells proliferate more frequently than the MAGE-A4+ population, suggesting that MAGE-A4 might have an anti-proliferative effect when expressed in GCNIS cells [14]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call