Abstract
The result provided in this paper helps complete a unified picture of the scaling behavior in heavy-tailed stochastic models for transmission of packet traffic on high-speed communication links. Popular models include infinite source Poisson models, models based on aggregated renewal sequences, and models built from aggregated on–off sources. The versions of these models with finite variance transmission rate share the following pattern: if the sources connect at a fast rate over time the cumulative statistical fluctuations are fractional Brownian motion, if the connection rate is slow the traffic fluctuations are described by a stable Lévy motion, while the limiting fluctuations for the intermediate scaling regime are given by fractional Poisson motion. In this paper, we prove an invariance principle for the normalized cumulative workload of a network with m on–off sources and time rescaled by a factor a. When both the number of sources m and the time scale a tend to infinity with a relative growth given by the so-called ’intermediate connection rate’ condition, the limit process is the fractional Poisson motion. The proof is based on a coupling between the on–off model and the renewal type model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.