Abstract

Temporal lobe epilepsy, one of the most common epilepsy syndromes, is characterized by hippocampal hyperexcitability and progressive seizure susceptibility. Omega-3 fatty acids are involved in neuronal excitability and have anticonvulsant properties. We studied the effect of docosahexaenoic acid (DHA) or its derived lipid mediator, neuroprotectin D1 (NPD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid), in evoked seizures using a rapid kindling model of temporal lobe epilepsy. DHA or NPD1 was administered in rodents with or without kindling acquisition. Locomotor seizures and evoked epileptiform hippocampal activity immediately after hippocampal stimulations were analyzed. DHA or NPD1 limits hippocampal electrically induced hyperexcitability. Seizures induced by kindling triggered NPD1 synthesis in the hippocampus. Supplying its precursor, DHA, or direct injection of NPD1 into the third ventricle resulted in attenuation of kindling progression and hippocampal hyperexcitability. The significance of NPD1 in temporal lobe epilepsy could open new pathways for understanding the initiation and propagation of seizures and the role this lipid mediator plays in the neuronal network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.