Abstract

Syndecans are single-pass transmembrane proteins on the cell surface that are involved in various cellular functions. Previously, we reported that both homo- and hetero-form of syndecan dimers affected their functionality. However, little is known about the structural role of the transmembrane domain of syndecan-3. A series of glutathione-S-transferase syndecan-3 proteins showed that syndecan-3 formed SDS-resistant dimers and oligomers. SDS-resistant oligomer formation was barely observed in the syndecan deletion mutants lacking the transmembrane domain. Interestingly, the presence of an alanine 397 residue in the transmembrane domain correlated with SDS-resistant oligomer, and its replacement by phenylalanine (AF mutant) significantly reduced SDS-resistant oligomer formation. Beside the AF mutant significantly reduced syndecan-3 mediated cellular processes such as cell adhesion, migration and neurite outgrowth of SH-SY5Y neuroblastoma. Furthermore, the alanine residue regulated hetero-oligomer formation of syndecan-3, and hetero-oligomer formation significantly reduced syndecan-3-mediated neurite outgrowth of SH-SY5Y cells. Taken together, all these data suggest that syndecan-3 has a specific feature of oligomerization by the transmembrane domain and this oligomerization tendency is crucial for the function of syndecan-3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.