Abstract

Cartilaginous fishes have large and elaborate olfactory organs, but only a small repertoire of olfactory receptor genes. Here, we quantitatively analyze the olfactory system of 21 species of sharks and rays, assessing many features of the olfactory organ (OOR) (number of primary lamellae, branches of the secondary folds, sensory surface area, and density and number of sensory neurons) and the olfactory bulb (OB) (number of neurons and non-neuronal cells), and estimate the ratio between the number of neuronsin the two structures. We show that the number of lamellae in the OOR does not correlate with the sensory surface area, while the complexity of the lamellar shape does. The total number of olfactory receptor neurons ranges from 30.5 million to 4.3 billion and the total number of OB neurons from 1.5 to 90 million. The number of neuronsin the olfactory epithelium is 16 to 158 times higher (median ratio is 46) than the number of neuronsin the OB. These ratios considerably exceed those reported in mammals. High convergence from receptor neurons to neurons processing olfactory information, together with the remarkably small olfactory receptor repertoire, strongly suggests that the olfactory system of sharks and rays is well adapted to detect a limited number of odorants with high sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.