Abstract
We found that overexpression of EgMYB111 and EgMYB157 genes positively regulate the abiotic stress tolerance. MYB family genes are well-known regulators in modulating the abiotic stress-responsive mechanisms in plants. However, lesser is known about the functional roles of oil palm MYB genes. Previously, we found that oil palm MYB genes such as EgMYB111 and EgMYB157 were significantly up-regulated under salinity, cold, and drought stress conditions. In this study, we over-expressed EgMYB111 and EgMYB157 genes separately in Arabidopsis plants. The transgenic Arabidopsis plants expressing EgMYB111 have shown improved tolerance to salinity, cold and drought stress conditions, whereas transgenic Arabidopsis plants expressing EgMYB157 dispalyed improved tolerance to cold and drought stress conditions only. Various biochemical analyses also revealed significant improvement of antioxidant enzyme activities, photosynthetic pigments, net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration in transgenic plants compared to wild-type plants under cold, drought, and salinity stress conditions. Significant up-regulation of various known stress marker genes such as RD22, RD29A, RAB18, COR47, ABA1, ABI1, HAB1 was also noticed in EgMYB111 and EgMYB157 expressing transgenic plants compared to wild-type plants under cold, drought, and salinity stress conditions. Taken together, over-expression of EgMYB111 and/or EgMYB157 significantly improve abiotic tolerance in transgenic Arabidopsis plants, indicating that EgMYB111 and EgMYB157 are the potential candidates for developing abiotic stress-tolerant crops in near future.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.