Abstract

Employing molecular beam depletion spectroscopy and Fourier transform infrared matrix spectroscopy, respectively, we have studied the O–H stretching vibrations of the glycine conformers I, II, and III. The glycine molecules were either deposited into large liquid helium clusters HeN, N̄=11000, THe=0.4 K) or trapped in various rare gas matrices (Ne, Ar, Kr) at temperatures below 12 K. By extrapolating the experimental data plotted as a function of the square root of the critical temperature of the matrix material, the positions of the gas phase absorption bands were estimated to be 3585±2 cm−1 (conformer I), 3295±3 cm−1 (conformer II), and 3580±5 cm−1 (conformer III). The experimental results are compared with recent ab initio calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.