Abstract

Abstract A systematic off-shell reduction scheme from five to four space-time dimensions is presented for supergravity theories with eight supercharges. It is applicable to theories with higher-derivative couplings and it is used to address a number of open questions regarding BPS black holes in five dimensions. Under this reduction the 5D Weyl multiplet becomes reducible and decomposes into the 4D Weyl multiplet and an extra Kaluza-Klein vector multiplet. The emergence of the pseudoscalar field of the latter multiplet and the emergence of the 4D R-symmetry group are subtle features of the reduction. The reduction scheme enables to determine how a 5D supersymmetric Lagrangian with higher-derivative couplings decomposes upon dimensional reduction into a variety of independent 4D supersymmetric invariants, without the need for imposing field equations. In this way we establish, for example, the existence of a new N=2 supersymmetric invariant that involves the square of the Ricci tensor. Finally we resolve the questions associated with the 5D Chern-Simons terms for spinning BPS black holes and their relation to the corresponding 4D black holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.