Abstract
We investigated the binding characteristics, content and intracellular distribution of nuclear and cytosolic oestrogen receptors in the uteri of rats bearing a unilateral intrauterine device, fitted 14--18 days earlier, at four phases of a 5-day oestrous cycle. The patterns of changes in wet weight and content of cytosolic and nuclear receptor that normally occur during the oestrous cycle were not altered by the presence of the device. At all stages of the cycle the intra-uterine-device-containing horn had a greater wet weight and a correspondingly higher content of cytosolic receptor than its contralateral control horn, the cellular concentration of cytosolic receptor being apparently maintained. However, the intra-uterine-device-containing horn had significantly lower cellular concentrations (i.e. per mg of DNA) of nuclear receptor, particularly at late dioestrus and pro-oestrus. Thus the treated horn showed a decreased translocation of receptor in response to increases in circulating oestrogens. Both horns contained equivalent amounts of an activating factor implicated in translocation and measured in vitro by binding of cytosol receptor to oligo(dT)-cellulose. The presence of an intra-uterine device neither altered the dissociation constants (Kd) of the nuclear and cytosolic oestrogen-receptor complexes nor the stability of the nuclear receptor complex in vitro. The decreased translocation cannot thus be directly attributed to changes in the physical properties of the receptor. This decrease may be responsible for the anti-fertility effect of the intra-uterine device (which affects only the treated horn of the bicornuate rat uterus), since implantation of the blastocyst requires correct concentrations of nuclear oestrogen receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.