Abstract
When a unique "oddball" stimulus is embedded in a train of repeated standard stimuli, its duration can seem relatively exaggerated (V. Pariyadath & D. Eagleman, 2007; P. U. Tse, J. Intriligator, J. Rivest, & P. Cavanagh, 2004). We explored the possibility of a link between this and signal intensity reductions at low levels of visual processing. In Experiment 1, we used Troxler fading as a metric of signal intensity-the apparent fading of a stimulus with prolonged viewing (I. P. V. Troxler, 1804). Fading was exaggerated by presenting oddball and standard stimuli to different eyes. However, there was no fading difference when standard stimuli were presented persistently or intermittently. These results contrast with oddball effects, which were insensitive to eye of origin, and which were contingent on intermittent standard stimuli. In Experiment 2, we show that oddball effects can be elicited with oddballs that are less intense versions of repetitive stimuli, and in Experiment 3, we show that oddball effects can scale with the discrepancy between repeated and oddball stimuli. These observations discredit any oddball effect explanation predicated on low-level neural response magnitudes to individual stimuli. Instead, our data support the view that oddball effects are driven by predictive coding (V. Pariyadath & D. Eagleman, 2007), reflecting the discrepancy between expected and actual inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.