Abstract
The upgraded L1 muon trigger system of the CMS experiment in the High Luminosity Large Hadron Collider is based on custom processors featuring large Field Programmable Gate Arrays (FPGAs) connected by large numbers of optical links. These provide the I/O bandwidth and power necessary to process the complex algorithms used during the collection of physics data. The design and performance requirements of these processors creates significant challenges in signal integrity, power delivery, and thermal management. In this paper we describe the Octopus processor, featuring a large Xilinx Virtex Ultrascale+ FPGA and up to 128 links interfaced to optics through high quality twin-ax copper cables. Results on signal integrity at 25 Gb/s and the first demonstration of 50+ Gb/s links with pluggable optics in CMS are also shown, demonstrating bit error rates below 10−15 at a 95% confidence level. The thermal performance is measured inside an Advanced-TCA crate with acceptable thermal margins up to 200 W of chip power. Future improvements are mentioned, potentially allowing operation at up to 300 W.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.