Abstract

Intense rainfall related to the typhoon T1326 on October 15–16, 2013 (total 824mm; maximum hourly rainfall 118.5mm) triggered numerous landslides and associated lahars at Izu Oshima Volcano, the northernmost part of Izu Mariana volcanic arc, Japan. The landslides were concentrated mainly in a 2-km2 area located on the western slope of Izu Oshima Volcano. Most of the landslides were shallow soil slips (<2m thick) in unconsolidated fallout tephra layers overlying lava flows and pyroclastic rocks. The rupture surfaces of them were located near the base of Y1 tephra (AD 1777–1778) and/or the base of Y4 tephra (AD 1421). The Y1 and Y4 tephras differ from the underlying paleosols in permeability, grain size and degree of compaction. The saturated hydraulic conductivities of the paleosols were one to two orders of magnitude smaller than those of the overlying Y1 and Y4 tephras. Most landslides mobilized completely into lahars, traveling along stream channels or flat slopes and flooding at the foot of the volcano. The associated lahars severely damaged inhabited areas and caused thirty five fatalities. Although the lahars eroded slopes and transported boulders up to 1m in diameter and a large amount of woody debris, they contained more than 90% of sand-to-silt-size particles, similar in composition to the original sliding materials. Sediment discharge volumes from three basins were estimated at 1.8–4.1×104m3/km2, based on debris volumes trapped by sediment retention dams. The characteristics of rainfall-induced landslides and associated lahars at Izu Oshima Volcano in 2013 provide an important lesson about future non-eruption-related landslide and lahar hazards at tephra-rich volcanoes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call