Abstract

Similar to parent polycyclic aromatic hydrocarbons (PPAHs), substituted PAHs (SPAHs) are prevalent in the environment and harmful to humans. However, they have not received much attention. This study investigated the occurrence, distribution, and sources of 10 PPAHs and 15 SPAHs in soil, water, and indoor and outdoor PM2.5 and dust in high-exposure areas (EAH) near industrial parks and low-exposure areas (EAL) far from industrial parks. PAH pollution in all media was more severe in the EAH than in the EAL. All SPAHs were detected in this study, with alkylated and oxygenated PAHs being predominant. Additionally, 3-OH-BaP and 1-OH-Pyr were detected in all dust samples in this study, and 6-N-Chr, a compound with carcinogenicity 10 times higher than that of BaP, was detected at high levels in all tap water samples. According to the indoor-outdoor ratio, PAHs in indoor PM2.5 in the EAH mainly originated from indoor pollution sources; however, those in the EAL were simultaneously affected by indoor-outdoor air exchange and indoor sources. Most target PAHs tended to deposit from air to dust, and this tendency was significantly negatively associated with the octanol-air partitioning coefficient of PAHs. SPAHs in the environment are primarily derived from the petroleum industry and the mixed combustion of gasoline, biomass, and coal. The toxicity equivalence factors of SPAHs were predicted using QSAR models to assess their lifetime carcinogenic risk (ILCR). The ILCRtotal from PAHs for adults in the EAH was >10−4. Though the levels of 6-N-Chr and 1-Me-Pyr in the environment were markedly lower than those of PPAHs, their ILCRs from PM2.5 inhalation and dermal contact with water exceeded 10−6. This study is significant for recognizing and controlling the health risks associated with SPAHs in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call