Abstract

Planktonic foraminifera provide a record of the upper ocean environment in the chemical and isotopic composition of individual shells. Globigerinoides ruber is a common tropical–subtropical planktonic foraminifer, and this species is used extensively for reconstruction of the paleo-environment. The different stable isotopic compositions of two morphotypes, G. ruber sensu stricto (s.s.) and G. ruber sensu lato (s.l.), first identified in sediments, suggested that G. ruber s.s. was dwelling in the upper 30 m of the water column and G. ruber s.l. at greater depths. Plankton tows and sediment trap experiments provided additional evidence distinguishing the two morphotypes and their habitats and invited the question as to whether the two morphotypes could be distinguished genetically. In this study, using phylogenetic analysis of nuclear partial small subunit ribosomal DNA (SSU rDNA) gene sequences representing 12 new and 16 known sequences, we identified four genotypes within G. ruber white variation; one of which is a sister group of Globigerinoides conglobatus, whereas the three others were sister groups of the G. ruber pink variation. Moreover, these two major groups corresponded to morphological differences described as G. ruber s.l. and s.s., respectively. This genetic evidence corroborates differences between the two morphotypes in the isotope record, and it will contribute to a more precise reconstruction of the thermal structure of the water column.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.