Abstract

Simple SummaryHead and neck cancer is the sixth most common cancer type worldwide, comprising tumors of the upper aero/digestive tract. Approximately 50% of these cancers originate in the oral cavity. Depending on disease stage, oral cancer patients are treated with single-modality surgery, or in combination with radiotherapy with or without chemotherapy. Despite advances in these modalities, the 5-year survival rate is merely 50%. Therefore, implementation of targeted therapies, directed against signaling molecules, has gained attention. One potential target is the MET protein, which can be present on the surface of cancer cells, orchestrating aggressive behavior. As cancer cells can shed the extracellular part of MET from their surface, it is important to identify for MET positive patients whether they possess the entire and/or only the intracellular part of the receptor to assess whether targeted therapies directed against the extracellular, intracellular, or both parts of MET need to be implemented.The receptor tyrosine kinase MET has gained attention as a therapeutic target. Although MET immunoreactivity is associated with progressive disease, use of targeted therapies has not yet led to major survival benefits. A possible explanation is the lack of companion diagnostics (CDx) that account for proteolytic processing. During presenilin-regulated intramembrane proteolysis, MET’s ectodomain is shed into the extracellular space, which is followed by γ-secretase-mediated cleavage of the residual membranous C-terminal fragment. The resulting intracellular fragment is degraded by the proteasome, leading to downregulation of MET signaling. Conversely, a membrane-bound MET fragment lacking the ectodomain (MET-EC-) can confer malignant potential. Use of C- and N-terminal MET monoclonal antibodies (moAbs) has illustrated that MET-EC- occurs in transmembranous C-terminal MET-positive oral squamous cell carcinoma (OSCC). Here, we propose that ectodomain shedding, resulting from G-protein-coupled receptor transactivation of epidermal growth factor receptor signaling, and/or overexpression of ADAM10/17 and/or MET, stabilizes and possibly activates MET-EC- in OSCC. As MET-EC- is associated with poor prognosis in OSCC, it potentially has impact on the use of targeted therapies. Therefore, MET-EC- should be incorporated in the design of CDx to improve patient stratification and ultimately prolong survival. Hence, MET-EC- requires further investigation seen its oncogenic and predictive properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.