Abstract

Groundwater samples from 32 principal aquifers across the United States (U.S.) provide a broad spatial scope of the occurrence and distribution of strontium (Sr) and are used to assess environments and factors that influence Sr concentration. Strontium is a common trace element in soils, rocks, and water and is ubiquitous in groundwater with detectable concentrations in 99.8% of samples (n = 4,824; median = 225 μg/L). Concentrations in 2.3% of samples exceeded the 4,000 μg/L health-based screening level. The relative importance of controlling factors on Sr concentration are spatially variable and partly dependent on the type of groundwater well. Three case settings illustrate controls on Sr concentration. For drinking-water supply wells, most high concentrations (>4,000 μg/L) were measured in samples from carbonate aquifers that resulted from water-rock interaction with Sr-bearing rocks and minerals. High Sr concentrations from monitoring wells were more common in unconsolidated sand and gravel aquifers in arid or semi-arid setting where shallow groundwater is affected by irrigation and evaporative concentration of dissolved constituents in combination with lithologic or applied Sr sources. Upwelling saline groundwater is also a source of Sr in some locations. Total dissolved solids concentration is an indicator of high Sr in all settings. An estimated 2.2 million people in the conterminous U.S. are potentially supplied water from public-supply wells with high Sr concentration, ~86% of whom use carbonate aquifers (with more than half supplied by the Floridan aquifer system). An additional 120,000 people are potentially supplied high-Sr-concentration water from domestic wells, more than half of whom (~58%) are in Texas. This study markedly expands the coverage of previous surveys of Sr in groundwater and is of interest given potential adverse human-health effects related to elevated concentrations of Sr and consideration of Sr for drinking-water regulation. Case settings with elevated Sr described for U.S. groundwater are likely indicative of settings and processes affecting Sr concentration in groundwater globally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.