Abstract

Humans can produce anticipatory smooth pursuit (ASP) for a few hundred ms prior to the appearance of a moving target. Once visual feedback is available, however, it is difficult to distinguish ASP from the visually-driven response with which it merges. Here we have developed a paradigm that extends the anticipatory period to show unequivocally how ASP can evolve over periods of up to 600 ms before being influenced by visual feedback. ASP was evoked by repeated presentation of constant velocity (ramp) stimuli preceded by auditory cues. The target was occluded during the initial part of the ramp, so that when it became visible it had already moved to an eccentric position. The occlusion period (T occ) varied from 0 to 500 ms in 100 ms increments; for each period ramps were presented in blocks of 8 with velocity held constant at 8, 16, 24 or 32 degrees/s. Eye displacement trajectories showed that subjects attempted to match the unseen target trajectory with a mixture of saccades and smooth pursuit. The smooth component was initiated progressively earlier in relation to target appearance as T occ increased, leading to progressively higher ASP gains by the time the target became visible. This prolongation of ASP throughout the occlusion period reveals the underlying internal drive that produces it, a drive that under normal circumstances quickly becomes masked by visual feedback.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call